Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 247: 118239, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244974

RESUMO

The monoaminergic systems dopamine (DA) and serotonin (5-HT) play important roles in neuromodulation, such as motor control, cognitive, affective, and neuroendocrine functions. In the present research study, we addressed the hypothesis that exposure to Type I pyrethroid tefluthrin may specifically target the dopaminergic and serotoninergic systems. Tefluthrin could modify brain monoamine neurotransmitters, DA and 5-HT levels as well as dopaminergic and serotoninergic signaling pathways. Adult male Wistar rats were treated with tefluthrin [2.2, 4.4 and 5.5 mg/kg bw, equivalent to 1/10, 1/5 and 1/4 of the acute oral rat lethal dose 50 (LD50) value] by oral gavage, six days. After last dose of tefluthrin, DA and 5-HT and metabolites levels were determined in brain regions (striatum, hippocampus, prefrontal cortex and hypothalamus). Tefluthrin induced a decrease of DA, 5-HT and metabolites contents, in a brain regional- and dose-related manner. The major decreases in DA and 5-HT contents were observed in prefrontal cortex tissue. Here, we studied that in vivo exposure to tefluthrin may alter DA and 5-HT neurotransmission in prefrontal cortex. Transcripts related to (i) dopaminergic [dopamine transporter 1 (Dat1), tyrosine hydroxylase (TH), dopamine receptors (Drd1, Drd2)], (ii) serotoninergic [serotonin transporter (SERT), tryptophan hydroxylase 2 (TPH2), serotonin receptors (5-HT1A, 5-HT2A)] and (iii) DA and 5-HT degradation [monoamine oxidases (MAOA, MAOB)] signaling pathways were investigated. Results showed that tefluthrin induced down-regulation of transcripts responsible for the synthesis and action of DA (TH, Drd1, Drd2) and 5-HT (SERT, TPH2). In contrast, tefluthrin treatment induced up-regulation of genes involved in DA transporter (Dat1), 5-HT receptors (5-HT1A, 5-HT2A) and monoamine oxidases (MAOA, MAOB). Given the integral roles of mitochondrial dysfunction and dopaminergic and serotoninergic alterations as hallmarks of neurodegenerative diseases, our data suggest that tefluthrin may be a candidate for pesticides contributing to neurodegenerative disorders pathogenesis by causing damage to the DA and 5-HT systems.


Assuntos
Ciclopropanos , Dopamina , Hidrocarbonetos Fluorados , Piretrinas , Ratos , Masculino , Animais , Dopamina/metabolismo , Piretrinas/metabolismo , Serotonina/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Oxirredutases/metabolismo
2.
Environ Pollut ; 338: 122694, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802283

RESUMO

Lambda-cyhalothrin, also known as cyhalothrin, is an efficient, broad-spectrum, quick-acting pyrethroid insecticide and acaricide and the most powerful pyrethroid insecticide in the world. However, there is increasing evidence that lambda-cyhalothrin is closely related to a variety of toxicity drawbacks (hepatotoxicity, nephrotoxicity, neurotoxicity and reproductive toxicity, among others) in non-target organisms, and oxidative stress seems to be the main mechanism of toxicity. This manuscript reviews the oxidative and mitochondrial damage induced by lambda-cyhalothrin and the signalling pathways involved in this process, indicating that oxidative stress occupies an important position in lambda-cyhalothrin toxicity. The mechanism of antioxidants to alleviate the toxicity of lambda-cyhalothrin is also discussed. In addition, the metabolites of lambda-cyhalothrin and the major metabolic enzymes involved in metabolic reactions are summarized. This review article reveals a key mechanism of lambda-cyhalothrin toxicity-oxidative damage and suggests that the use of antioxidants seems to be an effective method for preventing toxicity.


Assuntos
Inseticidas , Piretrinas , Antioxidantes/farmacologia , Inseticidas/toxicidade , Piretrinas/toxicidade , Nitrilas/toxicidade , Estresse Oxidativo
3.
Food Res Int ; 172: 113158, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689911

RESUMO

Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.


Assuntos
Alimento Funcional , Ácidos Linoleicos Conjugados , Bovinos , Humanos , Animais , Ovinos , Suplementos Nutricionais , Carcinogênese , Galinhas
4.
Environ Res ; 231(Pt 1): 116141, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187306

RESUMO

The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células CACO-2 , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo
5.
Food Chem Toxicol ; 169: 113434, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126889

RESUMO

The effects of Type II pyrethroid lambda-cyhalothrin on dopamine (DA) and serotonin (5-HT) synthesis in rat brain regions (striatum, hippocampus, prefrontal cortex, hypothalamus and midbrain) were studied. Lambda-cyhalothrin (1, 4 and 8 mg/kg bw, oral gavage, 6 days) induced a decrease of DA, 5-HT and metabolites contents, in a brain regional- and dose-related manner. The major decreases in DA and 5-HT contents were observed in hippocampus and prefrontal cortex tissues. This research study also showed in hippocampus and prefrontal cortex, that lambda-cyhalothrin modified the mRNA levels of DA transporter gene (Dat1 up-regulation), 5-HT transporter gene (SERT down-regulation), DA receptor genes (Drd1and Drd2 down-regulation), 5-HT receptor genes (5-HT1A and 5-HT2A down-regulation/up-regulation), DA synthesis gene (TH down-regulation), 5-HT synthesis gene (TPH2 down-regulation), DA and 5-HT degradation genes (MAOA and MAOB up-regulation). These results reveal that lambda-cyhalothrin altered central nervous system (CNS) monoaminergic neurotransmitters. Lambda-cyhalothrin evoked a selective neurotoxic injury to dopaminergic and serotoninergic pathways. These findings may clarify on the pyrethroids-induced neurotoxicity mechanisms and could involve pyrethroids as environmental risk factors leading to the development of neurodegenerative diseases.


Assuntos
Dopamina , Piretrinas , Animais , Encéfalo , Dopamina/metabolismo , Neurotransmissores/metabolismo , Nitrilas , Piretrinas/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Serotonina/metabolismo
6.
Crit Rev Toxicol ; 52(8): 664-680, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36625435

RESUMO

Tefluthrin is a Type I pyrethroid insecticide widely used all over the world. Residues of tefluthrin in various agricultural and animal-derived products may be related to potential human health risks. Tefluthrin metabolism in mammals involves hydrolysis of the ester bond to form cyclopropane acid and 4-methylbenzyl alcohol moieties, followed by oxidation. In this review manuscript, we provide crucial information regarding the toxicity of pyrethroids and propose natural antioxidants for amelioration poisoning in humans and animals. We call for the rational use of tefluthrin as an agrochemical product and for greater attention to the residual toxicity caused by tefluthrin in primary and succeeding crops. This greater attention is required given the global use of tefluthrin.


Assuntos
Inseticidas , Piretrinas , Animais , Humanos , Ciclopropanos/química , Hidrocarbonetos Fluorados/química , Mamíferos
7.
Food Chem Toxicol ; 156: 112460, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34348126

RESUMO

Gongolaria baccata (S.G. Gmelin) is marine brown seaweed mainly found on the coasts of the Baltic Sea south to the Mediterranean Sea, Canary Islands, Mauritania and Western Sahara. Herein, we report the cell viability and protective effects attributed to molecular mechanisms underlying antioxidant response to survive oxidative stress injuries. Caco-2 cells were submitted to oxidative stress by treatment with tert-butylhydroperoxide (tert-BOOH). The extract prevented cell damage and enhanced activity of antioxidant defenses (NQO1 and GST activities and GSH levels) reduced by treatment with tert-BOOH. The increases of MDA levels, the amount of intracellular ROS and caspase 3/7 activity induced by tert-BOOH were prevented when cells were treated with the G. baccata extract. Moreover, G. baccata extract caused up-regulation of GSTM2, Nrf2, and AKT1 gene expressions, as well as G. baccata extract reduced significantly Bax, BNIP3, APAF1, ERK1, JNK1, MAPK1, P38, P53, NFκB1, TNFα, IL-6, IL-1ß and HO-1 gene expressions related to apoptosis, proinflammation and oxidative stress induced by tert-BOOH. These results suggest that G.baccata extract protected the cells against oxidative damage and inflammation; protective effects that could be linked to their bioactive constituents. Hence, this brown seaweed G.baccata extract could be used for the development of functional foods and/or nutraceuticals.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , terc-Butil Hidroperóxido/toxicidade , Células CACO-2 , Caspase 3/metabolismo , Caspase 7/metabolismo , Glutationa/metabolismo , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Food Chem Toxicol ; 145: 111671, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32784000

RESUMO

The present study investigated the effect of culture extracts (CB08035-SCA and CB08035-SYP) from Marinobacter hydrocarbonoclasticus (strain CB08035) on cell viability and the potential protective effects attributed to molecular mechanisms underlying antioxidant response to survive oxidative stress injuries. Caco-2 cells were submitted to oxidative stress by treatment with tert-butyl hydroperoxide (t-BOOH). Both extracts prevented cell damage and enhanced activity of antioxidant defenses (NQO1 and GST activities and GSH levels) reduced by treatment with t-BOOH. Increased ROS and caspase 3/7 activity induced by t-BOOH were dose-dependently prevented when cells were treated with the extracts. CB08035-SCA caused up-regulation of Nrf2, AKT1 and Bcl-2 gene expressions. Moreover, CB08035-SCA and CB08035-SYP treatments reduced significantly Bax, BNIP3, APAF1, ERK1, JNK1, MAPK1, NFκB1, TNFα, IL-6, IL-1ß and HO-1 gene expressions of apoptosis, proinflammation and oxidative stress induced by t-BOOH. CB08035-SCA and CB08035-SYP CPE extracts confer a significant protection against oxidative insults to cells. Our results show that culture extracts CB08035-SCA and CB08035-SYP from M. hydrocarbonoclasticus (strain CB08035) appeared to have antioxidant potential, based on their ability to protect antioxidant enzymes and mRNA gene expressions linked to apoptosis/oxidative pathways. These results suggest that culture extracts CB08035-SCA and CB08035-SYP can be a potential ingredient in the pharmaceutical and cosmeceutical industries.


Assuntos
Antioxidantes/farmacologia , Extratos Celulares/farmacologia , Marinobacter/química , Estresse Oxidativo/efeitos dos fármacos , Células CACO-2 , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Malondialdeído/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Espécies Reativas de Oxigênio
9.
Food Chem Toxicol ; 137: 111173, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028016

RESUMO

We attempted to identify cellular mechanisms as an approach to screen chemicals for the potential to cause developmental neurotoxicity. We examine, in SH-SY5Y cells, whether apoptosis and oxidative stress via reactive oxygen species (ROS) generation, caspase 3/7 activation, gene expression (Bax, Bcl-2, Casp-3, BNIP3, p53 and Nrf2) alterations and necrosis by release of cytosolic adenylate kinase (AK), underlie direct effects of the pyrethroids cyfluthrin and alpha-cypermethrin. We also determined transcriptional alterations of genes (TUBB3, NEFL, NEFH, GAP43, CAMK2A, CAMK2B, WNT3A, WNT5A, WNT7A, SYN1 and PIK3C3) linked to neuronal development and maturation. Our results indicate that cyfluthrin and alpha-cypermethrin have the ability to elicit concentration-dependent increases in AK release, cellular ROS production, caspase 3/7 activity and gene expression of apoptosis and oxidative stress mediators. Both pyrethroids caused changes in mRNA expression of key target genes linked to neuronal development. These changes might reflect in a subsequent neuronal dysfunction. Our study shows that SH-SY5Y cell line is a valuable in vitro model for predicting development neurotoxicity. Our research provides evidence that cyfluthrin and alpha-cypermethrin have the potential to act as developmental neurotoxic compounds. Additional information is needed to improve the utility of this in vitro model and/or better understand its predictive capability.


Assuntos
Síndromes Neurotóxicas/metabolismo , Nitrilas/toxicidade , Piretrinas/toxicidade , Adenilato Quinase/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional/efeitos dos fármacos
10.
Environ Int ; 135: 105414, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31874349

RESUMO

Glyphosate-containing herbicides are the most used agrochemicals in the world. Their indiscriminate application raises some concerns regarding the possible health and environmental hazards. In this study, we investigated in human neuroblastoma cell line SH-SY5Y if oxidative stress, altered neurodevelopment and cell death pathways are involved in response to glyphosate and its metabolite aminomethylphosphonic acid (AMPA) exposures. MTT and LDH assays were carried out to assess the glyphosate and AMPA cytotoxicity. Lipid peroxides measured as malondialdehyde (MDA), nitric oxide (NO) and reactive oxygen species (ROS) production, and caspase-Glo 3/7 activity were evaluated. The neuroprotective role of melatonin (MEL), Trolox, N-acetylcysteine (NAC) and Sylibin against glyphosate- and AMPA-induced oxidative stress was examined. Glyphosate and AMPA effects on neuronal development related gene transcriptions, and gene expression profiling of cell death pathways by Real-Time PCR array were also investigated. Glyphosate (5 mM) and AMPA (10 mM) induced a significant increase in MDA levels, NO and ROS production and caspase 3/7 activity. Glyphosate exposure induced up-regulation of Wnt3a, Wnt5a, Wnt7a, CAMK2A, CAMK2B and down-regulation of GAP43 and TUBB3 mRNA expression involved in normal neural cell development. In relation to gene expression profiling of cell death pathways, of the 84 genes examined in cells a greater than 2-fold change was observed for APAF1, BAX, BCL2, CASP3, CASP7, CASP9, SYCP2, TNF, TP53, CTSB, NFκB1, PIK3C3, SNCA, SQSTMT, HSPBAP1 and KCNIPI mRNA expression for glyphosate and AMPA exposures. These gene expression data can help to define neurotoxic mechanisms of glyphosate and AMPA. Our results demonstrated that glyphosate and AMPA induced cytotoxic effects on neuronal development, oxidative stress and cell death via apoptotic, autophagy and necrotic pathways and confirmed that glyphosate environmental exposure becomes a concern. This study demonstrates that SH-SY5Y cell line could be considered an in vitro system for pesticide screening.


Assuntos
Neuroblastoma , Estresse Oxidativo , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Glicina/análogos & derivados , Humanos , Espécies Reativas de Oxigênio
11.
J Genomics ; 5: 68-70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698737

RESUMO

Pasteurella multocida is one of the most frequently isolated bacteria in acute pneumonia cases, being responsible for high mortality rates in Peruvian young alpacas, with consequent social and economic costs. Here we report the genome sequence of P. multocida strain UNMSM, isolated from the lung of an alpaca diagnosed with pneumonia, in Peru. The genome consists of 2,439,814 base pairs assembled into 82 contigs and 2,252 protein encoding genes, revealing the presence of known virulence-associated genes (ompH, ompA, tonB, tbpA, nanA, nanB, nanH, sodA, sodC, plpB and toxA). Further analysis could provide insights about bacterial pathogenesis and control strategies of this disease in Peruvian alpacas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...